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We analyze the influence of an infinite planar perfectly conducting surface on the spatial correlation func-
tions of a random quasimonochromatic classical electromagnetic vector field, based on a TE/TM decomposi-
tion of an angular spectrum of random plane waves. The presence of the surface causes the correlation to
depend on both the absolute and relative locations of the field points �inhomogeneous correlation�. Known
asymptotic results for statistically homogeneous random free fields are retrieved as special cases. The analyti-
cal results are illustrated with computations for separations that are either perpendicular or parallel to the
surface. The correlation distance for any field component exhibits a damped oscillatory dependency on the
local center point. A geometric interpretation in terms of fluctuations of correlation cells is given.
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I. INTRODUCTION

Spatial correlation governs the statistical geometric struc-
ture of random fields in terms of the two-point statistical
interdependence. Previous studies of spatial correlation func-
tions for stochastic electromagnetic �EM� fields have prima-
rily concentrated on the spatial correlation of free fields �i.e.,
in homogeneous infinite space�, based on space-time �1–3� or
analytic �4� characterization of the real or complex electric
field, respectively, or in the space-frequency domain for
quasimonochromatic fields �e.g., �5��. This idealized situa-
tion of an unbounded medium applies to blackbody radiation
in thermal equilibrium, serving as an approximation for a
wide variety of real or conceptual scenarios at relatively
short wavelengths.

More recently, studies of the first-order and second-order
statistics of scalar wave fields inside two-dimensional �2D�
quantum billiards were reported �6,7�. The close agreement
between theoretical predictions for the statistics of quantum
wave functions or correlations in chaotic cavities and those
measured in 2D nonintegrable microwave resonators �3� sug-
gests an intimate relationship between results from quantum
theory and those for wave functions in classical electromag-
netism, at least for scalar field components. The suggested
relation between quantum chaos for scalar �8� and classical
EM random vector fields in three dimensions �9� awaits fur-
ther investigation. Related studies have analyzed the effect of
relative scales of the separation distance on the spatial cor-
relation functions of quantum systems �6,10�.

The presence of a physical boundary causes departures of
the physical properties of an ideal random field from those in
free space, by rendering the local stochastic field to become
statistically inhomogeneous and, hence, anisotropic �but not
necessarily vice versa �11��. As will be shown, a similar in-
homogeneity and anisotropy emerges with regard to the spa-
tial correlation of the field. The effect can be studied through
canonical configurations. As a basic example, here we ana-
lyze the effect of a perfect electrically conducting �PEC� in-

finite planar boundary on the spatial correlation function of a
random time-harmonic �quasimonochromatic� classical EM
field. This simple configuration is of fundamental interest in
numerous applications, e.g., in studies of the effect of reflec-
tions from the ionosphere, Earth’s surface, or natural or man-
made obstacles on multipath propagation and correlation of
wideband radio waves in otherwise “open” �nonresonant� en-
vironments; in scattering from random rough surfaces; for
boundary fields in enclosed resonant environments �cavities�
such as static chaotic cavities �billiards� �8,9,12�, microwave
ovens and mode-stirred reverberant �overmoded� cavities,
e.g., �13–15�; in coupling of interior to exterior fields
through apertures; in EM properties of mesoscopic systems
with relatively few degrees of freedom; etc.

Experiments and theoretical analyses have shown that the
presence of walls leads to a quantifiable increase of the sta-
tistical anisotropy of the interior EM field inside an over-
moded cavity �15–18�. More generally, the field in the vicin-
ity of a boundary exhibits departures in its first-order �i.e.,
local distributional� statistical properties compared to the
idealized characteristics of the “deep” field, i.e., at electri-
cally large distances from the nearest boundary �19�. The
present theoretical study is a natural extension to second-
order �correlation� properties for a particular class of inho-
mogeneous anisotropic vector EM fields. As will be shown, a
major consequence of the ensuing inhomogeneity of the spa-
tial autocorrelation is the fluctuation of the localized correla-
tion distance. The resulting variations in the equivalent num-
ber of statistically independent sample points affect the
sample statistics. In effect, this number becomes itself a ran-
dom variable as a function of location. Thus, the effect of
statistical field inhomogeneity on its sample distributions and
associated statistics is twofold �bivariate�, viz., through
changes in both first-order and second-order properties.

As basic tools for our analysis, we shall here be using the
two-point coherence and correlation functions. An alternative
approach considers the geometry of nodal lines �20�, yielding
sharper but more restrictive information about the spatial
structure of the field. In an infinite stationary homogeneous
lossless medium, an ideal random EM field is statistically
homogeneous �quasistationary�, i.e., its statistical properties
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time origins. Typically, the degree of statistical field aniso-
tropy and inhomogeneity increases as the location�s� of ob-
servation approach�es� a conducting boundary surface, re-
sulting in statistics that depend on the absolute location�s�.
More generally, dynamic modulation or nonperiodicity of the
excitation field in a mechanically static configuration, or
time-harmonic excitation in a time-varying configuration
�21�, leads to spatiotemporal field inhomogeneity and corre-
lation structure.

II. TE/TM DECOMPOSITION OF RANDOM PLANE-WAVE
SPECTRUM

For random fields in infinite or semi-infinite spaces, the
electric field Ei�r� generated by time-harmonic sources at
infinity within a spherical sector of solid angle � can be
characterized by a continuous angular spectrum of incident
random plane waves as �22� �cf. also �23��

Ei�r� =
1

�
� �

�

Ei���exp�− jki · r�d� . �1�

Here, Ei=E0 cos �1v+E0 sin �1w with 0����, in which 1v
and 1w are orthogonal unit vectors spanning the local trans-
verse plane that is orthogonal to the incident wave vector ki,
where �ki��k is constant �assumption of quasimonochroma-
ticity�, and we choose 1v�1�, 1w�−1�, where � denotes a
definition. The vector spectral amplitude E0 is a circular
complex variate, and � is a random orientation angle in the
transverse plane with reference to 1v �Fig. 1�a��. A standard
spherical coordinate system with elevation �� /2�−� and
azimuth � is assumed. A harmonic time dependence
exp�j	t� is suppressed throughout.

For each spectral plane-wave component �Ei ,Hi ,ki�, the
propagation and recombination of the incident field with its
reflection from an infinite planar impedance boundary is
governed by the usual laws for deterministic plane waves.
Specifically, consider the transverse electric ��TE� perpen-
dicularly polarized� component of a wave obliquely incident
at an angle � with respect to the positive normal 1z to the
boundary �Fig. 1�b��. For arbitrary ki, the plane of incidence
for a specific spectral component is spanned by ki and 1z,
which defines the associated coordinate plane oxz, i.e., �
=0. The incident electric and magnetic fields at an arbitrary

location ri�−x0 ,z0� with −x0�0, z0
0, propagating in the
direction of ki=k sin � cos �1x+k sin � sin �1y −k cos �1z,
"0���� /2 with �=0, before reflection, are

E�
i exp�− jki · ri� = E0 cos � exp�jkx0 sin ��

� exp�jkz0 cos ��1y , �2�

H�
i exp�− jki · ri� =

E0

�0
cos � exp�jkx0 sin ��

� exp�jkz0 cos ���cos �1x + sin �1z� ,

�3�

where �0��
0 /�0 is the intrinsic impedance of free space,
cos �=1v ·Ei /E0 with 1v=1y and 1w=−cos �1x−sin �1z.

For specular reflection, the wave vector of the reflected
wave is kr= �I−21z1z� ·ki=k sin �1x+k cos �1z, where I sym-
bolizes the unit 3�3 dyadic. The resultant electric
field E�=E�,y1y at r0�x0 ,z0�= �I−21x1x� ·ri follows as
E�

i �r0�+E�
r �r0�= �1+������E�

i �r0�, in which E�
i �r0�

=E�
i �ri�exp�−j2kx0 sin ��. The corresponding magnetic field

is H�= �H�,x
i −H�,x

r �1x+ �H�,z
i +H�,z

r �1z�H�,x1x+H�,z1z.
In case of a PEC boundary ������=−1, "��, the dependence
of the spectral components of E��E�

i +E�
r and H��H�

i

+H�
r on kz0 cos � is sinusoidal:

E� exp�− jk · r0� = j2E0 cos � exp�− jkx0 sin ��

� sin�kz0 cos ��1y , �4�

H� exp�− jk · r0� = 2
E0

�0
cos � exp�− jkx0 sin ��

� �cos � cos�kz0 cos ��1x

+ j sin � sin�kz0 cos ��1z� . �5�

Similarly, the transverse magnetic ��TM� parallel polar-
ized� components of the incident wave are characterized by
H	

i =H	,y
i 1y and E	

i =E	,x
i 1x+E	,z

i 1z with

H	
i exp�− jki · ri� = H0 sin � exp�jkx0 sin ��

� exp�jkz0 cos ��1y , �6�

E	
i exp�− jki · ri� = − �0H0 sin � exp�jkx0 sin ��

� exp�jkz0 cos ���cos �1x + sin �1z� ,

�7�

with sin �=1v ·Hi /H0, where H0��Hi�. For the resultant
fields, H	 = �H	,y

i +H	,y
r �1y and E	 = �E	,x

i +E	,x
r �1x+ �E	,z

i −E	,z
r �1z

at r0 in case of a PEC surface ��	���=−1�, we have

H	 exp�− jk · r0� = 2H0 sin � exp�− jkx0 sin ��

� cos�kz0 cos ��1y , �8�

E	 exp�− jk · r0� = − 2�0H0 sin � exp�− jkx0 sin ��

� �j cos � sin�kz0 cos ��1x

+ sin � cos�kz0 cos ��1z� . �9�

FIG. 1. �a� Local transverse plane; �b� local plane of incidence
��=0� for single TE component.
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In summary, for each random plane-wave spectral compo-
nent �Ei ,Hi ,ki� with arbitrary 1ki and with random � and E0

or H0, Eqs. �4�, �5� and �8�, �9� define a pair of TE and TM
modal components of the resultant �i.e., incident plus re-
flected� random fields E�r0� and H�r0�, with respect to the
plane of incidence �=0.

For general �, the Cartesian components of a spectral
component of E�r0�=�−1

�E���exp�−jk ·r0�d� and
H�r0�=�−1

�H���exp�−jk ·r0�d�, with respect to a fixed
reference frame oxyz are, therefore,

Ex exp�− jk · r0� = j2�E� cos � cos � − E� sin ��

�exp�− jk�0 sin ��sin�kz0 cos �� ,

�10�

Ey exp�− jk · r0� = j2�E� cos � sin � + E� cos ��

�exp�− jk�0 sin ��sin�kz0 cos �� ,

�11�

Ez exp�− jk · r0� = 2E� sin � exp�− jk�0

�sin ��cos�kz0 cos �� , �12�

where �0�x0 cos �+y0 sin �, E���=E�1�+E�1�,
E�=E0 cos �, E�=−�0H0 sin � with now H0=E0 /�0, and

Hx exp�− jk · r0� = 2�H� cos � cos � − H� sin ��

�exp�− jk�0 sin ��cos�kz0 cos �� ,

�13�

Hy exp�− jk · r0� = 2�H� cos � sin � + H� cos ��

�exp�− jk�0 sin ��cos�kz0 cos �� ,

�14�

Hz exp�− jk · r0� = j2H� sin � exp�− jk�0

�sin ��sin�kz0 cos �� , �15�

with H���=H�1�+H�1�, H�= �E0 /�0�cos �, H�=H0 sin �.
Except in Sec. III D, we shall further consider the correlation
properties of the electric field only; corresponding properties
for the magnetic field follow mutatis mutandis.

III. SEPARATION IN NORMAL DIRECTION

A. Tangential field

For the calculation of the two-point spatial correlation, the
quantity of fundamental importance is the 3�3 field coher-
ency dyadic �E�r1�E*�r2�� at arbitrary locations r1 and r2

�4�. For separation in normal direction �x1=x2�0 and y1
=y2�0�, the azimuthal symmetry can be exploited from
which the general solution can be constructed from the TE
and TM components.

For TE components, from �1� and �4�, i.e., �11� with �
=0,

�Ey�x1,z1�Ey
*�x2,z2�� =

1

�1�2

� �

�1

� �
�2

�j2E1��1�

�exp�− jkx1 sin �1�sin�kz1 cos �1��

��− j2E2
*��2�exp�jkx2 sin �2�

�sin�kz2 cos �2��d�2d�1� , �16�

where �·� denotes ensemble averaging and d�1,2

=sin �1,2d�1,2d�1,2 for the angular ranges 0��1,2�2� and
0��1,2�� /2, i.e., integration and normalization are with
respect to the half space of the source field ��1,2=2� sr�.
Since �Re�Ep�

�Im�Eq�
��=0 for an ideal random field, and on

account of Emy
=Em�

1� for TE polarization ��, �=� or �; m,
p,q=1,2�, by definition of 1��1y, we have for circular Em,

�E1��1� · E2
*��2�� = �E1�

��1�E2�

* ��2�� + �E1�
��1�E2�

* ��2��

= �Re�E1�
��1��Re�E2�

��2���

+ �Im�E1�
��1��Im�E2�

��2���

= 2C���12� , �17�

where C� ��E0�2� /4, �12� ��1��2� \ ��1��2� and Kro-
necker’s delta for sets is here defined by ��0”��1, valid when
both solid angles completely overlap ��1=�2�, but equaling
0 for any other nonempty sets �12 �i.e., for �1��2�. On
substituting �17� into �16�, and accounting for the assumption
x1=x2,

�Ey�x1,z1�Ey
*�x1,z2�� =

8C

2�
�

0

2�

d��
0

�/2

exp�− jk�x1

− x2�sin ��x1=x2
sin�kz1 cos ��

�sin�kz2 cos ��sin �d�

= 4C�sinc�k�z1 − z2�� − sinc�k�z1 + z2��� .

�18�

The spatial autocorrelation function of Ey follows as:

�Ey
�z1,z2� �

�Ey�z1�Ey
*�z2��

���Ey�z1��2���Ey�z2��2�
�19�

=
sinc�k�z1 − z2�� − sinc�k�z1 + z2��
�1 − sinc�2kz1��1 − sinc�2kz2�

.

�20�

Thus, the presence of a PEC surface results in
�Ey

�z1 ,z2�—like Ey�z� itself—becoming inhomogeneous, i.e.,
its value depends now also on the absolute distances z1,2, in
addition to the familiar dependence on the separation �z
= �z1−z2� for homogeneous spatial correlation in unbounded
space �cf. Sec. II of �1��. The result �20� is to be compared
with the functional sinc�f�z1−z2 ,z1+z2�� in Eq. �21� of �24�
for the case of localized random functions. For the asymp-
totically deep field, i.e., for min�kz1 ,kz2�→ +�,
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�Ey
�z1,z2� → sinc�k�z1 − z2�� . �21�

This expression differs, of course, from the one for the trans-
verse field in unbounded space �cf. �29��, because �21� con-
tains contributions by TE components only. In the spectral
expansion, the contribution by the Ex of TM vector compo-
nents must also be accounted for. On the other hand, for TE
waves, Ey constitutes the total field, in which case �21� cor-
responds to the asymptotic correlation function for the vector
field in unbounded space �cf. Sec. III C�.

For TM wave components, the correlation functions for
Ex and Ez are obtained in a similar manner. With now Em
=−Em�

1�, from �9�,

�Ex�z1�Ex
*�z2�� = 4C�

0

1

exp�− jk�x1 − x2��1 − u2�x1=x2

� �cos�k�z1 − z2�u� − cos�k�z1 + z2�u��u2du

�22�

=4C�sinc�k�z1 − z2�� −
2 sin�k�z1 − z2��

�k�z1 − z2��3

+
2 cos�k�z1 − z2��

�k�z1 − z2��2 − sinc�k�z1 + z2��

+
2 sin�k�z1 + z2��

�k�z1 + z2��3 −
2 cos�k�z1 + z2��

�k�z1 + z2��2 � ,

�23�

in which u�cos �. In particular, when z1=z2,

��Ex�z1,2��2� = 4C�1

3
− sinc�2kz1,2� +

2 sin�2kz1,2�
�2kz1,2�3

−
2 cos�2kz1,2�

�2kz1,2�2 � . �24�

The explicit expression for �Ex
�z1 ,z2�� �Ex�z1�Ex

*�z2�� /
���Ex�z1��2���Ex�z2��2� follows upon substituting �23� and �24�
herein.

For the correlation function of the tangential field Et, par-
allel to the surface, the contributions by the TE and TM
waves are to be combined. Since such pairs of modal field
components are mutually orthogonal and uncorrelated, i.e.,
�Re�E��Re�E�

*��= �Im�E��Im�E�
*��= �Re�E��Im�E�

*��=0, and
because of the azimuthal symmetry of the configuration,

�Et�z1�Et
*�z2�� = �Ex�z1�Ex

*�z2�� + �Ey�z1�Ey
*�z2�� . �25�

Therefore, we finally arrive at

�Et
�z1,z2� �

�Et�z1�Et
*�z2��

���Et�z1��2���Et�z2��2�
, �26�

with

�Et�z1�Et
*�z2�� = 8C�sinc�k�z1 − z2�� −

sin�k�z1 − z2��
�k�z1 − z2��3

+
cos�k�z1 − z2��
�k�z1 − z2��2 − sinc�k�z1 − z2��

+
sin�k�z1 + z2��
�k�z1 + z2��3 −

cos�k�z1 + z2��
�k�z1 + z2��2 � ,

�27�

��Et�z1,2��2� = 8C�2

3
−

sin�2kz1,2�
2kz1,2

+
sin�2kz1,2�
�2kz1,2�3

−
cos�2kz1,2�
�2kz1,2�2 � . �28�

In the limit min�kz1 ,kz2�→ +�, �Et
�z1 ,z2� becomes again

homogeneous and reduces to the known result for a quasi-
monochromatic transverse field in unbounded space
�1–3,5,25�

�Et
�z1,z2� →

3

2
�sinc�k�z1 − z2�� −

sin�k�z1 − z2��
�k�z1 − z2��3

+
cos�k�z1 − z2��
�k�z1 − z2��2 � . �29�

This correspondence is remarkable, for the deep field in the
presence of a PEC plane always originates from a statisti-
cally anisotropic source field, as incidence is from within a
half space ��1,2=2� sr�, even when min�kz1 ,kz2�→ +� be-
cause generating sources for plane waves are located at in-
finity. In this case, the average power flux density of the
incident field is �Pi�r��=−���E0�2� / �4�0��1z. By contrast, in
the absence of a boundary, incidence in unbounded space is
from all directions ��1,2=4� sr� and is statistically isotropic
��Pi�r��=0�. This suggests that �29� holds only when the
boundary is ideal, i.e., infinite, planar, and perfectly conduct-
ing, so as to create an ideal image of the source field for
which �P�r��=0.

Figure 2 compares �Et
�kz1=� /4 ,k�z� with �Et

�kz1

FIG. 2. Spatial correlation function �Et
�kz1 ,k�z� of tangential

field as a function separation k�z in normal direction �x1=x2 ,y1

=y2�.
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→ +� ,k�z�, demonstrating the increased correlation for
relative small k�z compared to that for the deep or un-
bounded field. The increase in the distance k�z to the first
zero crossing �correlation distance; cf. Sec. V� and the in-
creased amplitude of oscillations now explain at least quali-
tatively the previously observed discrepancies between theo-
retical and experimentally measured correlation functions
�Et

�z��kz1�� ,k�z� for TM modes of 2D microwave billiards,
e.g., in Fig. 2�a� of �3�, where comparison with the theoret-
ical result for the deep field �i.e., assuming an arbitrary large
distance between the field probe and the nearest short cavity
wall� was made instead. Note that here we have introduced
the superscript “�z�” indicating explicitly the direction of
point separation, for later benefit.

B. Normal field

For the field component Ez, in the direction normal to the
boundary, the spatial correlation function

�Ez
�z1,z2� �

�Ez�z1�Ez
*�z2��

���Ez�z1��2����Ez�z2��2�
�30�

can be calculated solely from the TM components, using

�Ez�z1�Ez
*�z2�� = 4C�

0

1

exp�− jk�x1 − x2��1 − u2�x1=x2

��cos�k�z1 − z2�u� + cos�k�z1 + z2�u��

��1 − u2�du

= 8C� sin�k�z1 − z2��
�k�z1 − z2��3 −

cos�k�z1 − z2��
�k�z1 − z2��2

+
sin�k�z1 + z2��
�k�z1 + z2��3 −

cos�k�z1 + z2��
�k�z1 + z2��2 � �31�

with, in particular,

��Ez�z1,2��2� = 8C�1

3
+

sin�2kz1,2�
�2kz1,2�3 −

cos�2kz1,2�
�2kz1,2�2 � . �32�

When min�kz1 ,kz2�→ +�, we retrieve the known correlation
function for the longitudinal field component in an un-
bounded homogeneous medium �1–3,5,25�

�Ez
�z1,z2� → 3� sin�k�z1 − z2��

�k�z1 − z2��3 −
cos�k�z1 − z2��
�k�z1 − z2��2 � . �33�

Figure 3 compares �Ez
�kz1=� /4 ,k�z� �solid line� with

the asymptotic result �Ez
�kz1→ +� ,k�z� �dotted line�. Com-

pared to �Et
, the effect of the PEC surface on �Ez

is now
significantly weaker. While the correlation for k�z�2 has
again increased, the first zero crossing of �Ez

�kz1

=� /4 ,k�z� now occurs at smaller values of k�z compared
to those for �Ez

�kz1→ +� ,k�z�.

C. Amplitude of vector field

For the magnitude of the total field, E� �E�, the contribu-
tions of both TE and TM wave components can again be

summed, on account of mode orthogonality and configura-
tional symmetry, yielding

�E�z1�E*�z2�� = �Ex�z1�Ex
*�z2�� + �Ey�z1�Ey

*�z2��

+ �Ez�z1�Ez
*�z2�� . �34�

With the aid of �18�, �23�, and �31�, we arrive at

�E�z1,z2� � �E�z1�E*�z2��
���E�z1��2����E�z2��2�

, �35�

where

�E�z1�E*�z2�� = 8C�sinc�k�z1 − z2�� − sinc�k�z1 + z2��

+
2 sin�k�z1 + z2��

�k�z1 + z2��3 −
2 cos�k�z1 + z2��

�k�z1 + z2��2 � ,

��E�z1,2��2� = 8C�1 − sinc�2kz1,2��+
2 sin�2kz1,2�

�2kz1,2�3

−
2 cos�2kz1,2�

�2kz1,2�2 � . �36�

If min�kz1 ,kz2�→ +�, then �35� approaches the result for
statistically homogeneous free fields �2�, i.e.,

�E�z1,z2� → sinc�k�z1 − z2�� , �37�

as expected by now.
Figure 4 compares �E�kz1=� /4 ,k�z� �solid line� with

�E�kz1→ +� ,k�z� �dotted line�. Qualitatively, the effect of
Et on �E is seen to dominate the contribution of Ez.

From �28�, �32�, and �33�, it follows that the energy den-
sity becomes statistically homogeneous when min�kz1 ,kz2�
→ +�, despite the presence of the PEC plane: standing
waves of individual modes do not persist, owing to the ran-
domness of the field.

FIG. 3. Spatial correlation functions �Ez

�z��kz1 ,k�z� and

�Ex

�x��kz1 ,k�x� of longitudinal field as a function of separation k�z
in normal direction �x1=x2 ,y1=y2� or k�x in tangential direction
�z1=z2�, respectively. The asymptotic functions are identical, i.e.,
�Ez

�z��kz1→ +� ,k�z�=�Ex

�x��kz1→ +� ,k�x�.
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D. Different and mixed field components

Finally, the mixed-correlation functions �4� between dif-
ferent field components are obtained mutatis mutandis. For
components belonging to different modal types �one TE, one
TM�, the correlation is zero because of mode orthogonality.
For components belonging to the same TM mode, however,

�ExEz
�z1,z2� �

�Ex�z1�Ez
*�z2��

���Ex�z1��2���Ez�z2��2�
�38�

with ��Ex�z1��2� and ��Ez�z2��2� given by �24� and �32�, respec-
tively, and with

�Ex�z1�Ez
*�z2�� = − j8C� J2�k�z1 − z2��

k�z1 − z2�
+

J2�k�z1 + z2��
k�z1 + z2� � ,

�39�

where J2�·� is the Bessel function of the first kind and second
order. The fact that �39� is purely imaginary indicates that Ex
and Ez are correlated in phase quadrature as a consequence
of the PEC boundary condition, which is apparent from a
comparison of �9� with �7�. Furthermore, �ExEz

�z1 ,z2�
=�EzEx

* �z2 ,z1�=�HzHx
�z1 ,z2�. By contrast, for an arbitrary tan-

gential direction 1t, the electric-electric mixed-correlation
function vanishes: Et=Ex cos �1x+Ey sin �1y, so that upon
substitution, using �39� and � integration across �0,2�� with
kernel cos � or sin �, it follows that �Et�z1�Ez

*�z2��=0. Thus,
�38� and �39� are only relevant in case of a 2D random field
whose spectral components consist of TM modes that all
have their ki lying within a single plane of incidence ��
=constant�.

The function −j�ExEz
�kz1=� /4 ,k�z� is shown in Fig. 5,

where it is compared with its asymptotic form for kz1
→ +�. In the former case, −j�ExEz

�kz1 ,k�z� tends to a
z1-dependent negative value when k�z→0, whereas in the
latter case, the function tends to zero. Moreover, if kz1=kz2
→0, then �ExEz

�kz1��−j��30/8��1− �2kz1�2 /35�.
For the mixed correlation between electric and magnetic

field components, from

�Ex�z1�Hy
*�z2�� = −

j4C

�0
� sin�k�z1 − z2��

�k�z1 − z2��2 −
cos�k�z1 − z2��

k�z1 − z2�

+
sin�k�z1 + z2��
�k�z1 + z2��2 −

cos�k�z1 + z2��
k�z1 + z2� � , �40�

�Hy�z1�Hy
*�z2�� =

4C

�0
2 �sinc�k�z1 − z2�� + sinc�k�z1 + z2��� ,

�41�

and, in particular,

��Hy�z2��2� =
4C

�0
2 �1 + sinc�2kz2�� , �42�

we obtain �ExHy
�z1 ,z2� by substituting �24�, �40�, and �42�

into �38�, after replacing Ez by Hy in the latter definition.
Note that �ExHy

�z1 ,z2�=�EyHx

* �z1 ,z2��−�EyHx
�z1 ,z2� is purely

imaginary and does not vanish for any pair of mutually or-
thogonal tangential directions. For min�kz1 ,kz2�→ +�, we
retrieve the known result for unbounded space �25�

�ExHy
�z1,z2� → − j

3

2
� sin�k�z1 − z2��

�k�z1 − z2��2 −
cos�k�z1 − z2��

k�z1 − z2� � .

�43�

Figure 6 compares −j�ExHy
�kz1=� /4 ,k�z� with its

asymptotic form. Unlike for unbounded random fields, or-
thogonal tangential electric and magnetic components at a
single location near the surface �kz1→0� are significantly
correlated in phase quadrature. This correlation gradually de-
creases in strength when kz1 is increased. For kz1=kz2→0,
�ExHy

�kz1��−j��5/3��1− �2kz1�2 /35�, i.e., unlike unbounded
fields, electric and magnetic field components at the same
location in front of a PEC surface show nonvanishing corre-
lation.

For the TM modes of a 2D field that are incident in a
single plane,

FIG. 4. Spatial correlation functions �E
�z��kz1 ,k�z� and

�E
�x��kz1 ,k�x� of the total field as a function of separation k�z in

normal direction �x1=x2 ,y1=y2� or k�x in tangential direction
�z1=z2�, respectively. The asymptotic functions are identical.

FIG. 5. Mixed spatial correlation function −j�ExEz
�kz1 ,k�z� for

a 2D TM field as a function of separation k�z in normal direction
�x1=x2 , y1=y2�.
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�Ez�z1�Hy
*�z2�� = − j

2�C

�0
� J1�k�z1 − z2��

k�z1 − z2�
+

J1�k�z1 + z2��
k�z1 + z2� � ,

�44�

which again valishes upon integration across the azimuthal
plane. Thus, correlation between electric and magnetic three-
dimensional fields exists only between their transverse com-
ponents.

IV. ARBITRARY DIRECTION OF POINT SEPARATION

Consider next two arbitrary locations r1�r2 and a global
reference frame oxyz �Fig. 7�. Although the general solution
can, in principle, be obtained with the aid of �10�–�15�, we
shall again take advantage of the azimuthal symmetry of the
configuration.

Without loss of generality, the projection of the line con-
necting both locations onto the boundary plane �z=0� defines
the reference direction ox in the tangential plane, whence

y1=y2=0. The axis ox subtends an angle ��ox� ,ox̂ with the
local plane of incidence ox�z� that is associated with each
impinging plane-wave component and spanned by ki� and
oz��oz, whence ki� ·r�=kx sin � cos �−kz cos �. The spec-
tral field components associated with ox�z� are now obtained
by replacing x by its projection x�=x cos �. With reference
to oxz, the tangential field Ex consists of TM contributions
Ex� cos � and TE contributions Ey� sin �, whereas the tan-
gential transverse field Ey contains TE contributions
Ey� cos � and TM contributions −Ex� sin �. The normal field
Ez�Ez�, being independent of �, still consists of TM contri-

butions only. Hence, for each vector plane-wave component,

Ex�r1�Ex
*�r2� = Ex��r1�Ex�

* �r2�cos2 � + Ey��r1�Ey�
* �r2�sin2 �

+ �Ex��r1�Ey�
* �r2� + Ex�

* �r1�Ey��r2��sin � cos �

�45�

Ey�r1�Ey
*�r2� = Ex��r1�Ex�

* �r2�sin2 � + Ey��r1�Ey�
* �r2�cos2 �

− �Ex��r1�Ey�
* �r2� + Ex�

* �r1�Ey��r2��sin � cos �

�46�

from which Ex�r1�Ex
*�r2�+Ey�r1�Ey

*�r2�=Ex��r1�Ex�
* �r2�

+Ey��r1�Ey�
* �r2�. Integration with respect to � and �, fol-

lowed by ensemble averaging, yields again the covariance
and correlation functions of Ex and Ey. The mixed-product
terms involve both TE and TM components and average to
zero because �Ex�Ey�

* �=0, so that the bracketed terms in �45�
and �46� do not contribute.

As a canonical example, we calculate correlation func-
tions for tangential separation of r1 and r2 along a line par-
allel to the ox axis and at equal height above the boundary
�z1=z2�0, y1=y2=0�, i.e., �E�

�x��x1 ,z1 ;x2 ,z1�. Figures 3, 4,
and 8 show results for the longitudinal, total, and transverse
field, respectively, as a function of the separation k�x
�k�x1−x2�. The case kz1=� /4 is compared with the
asymptotic result for kz1→ +�. All three correlation
functions are qualitatively similar and show an increased
first zero-crossing distance closer to the surface compared
to the asymptotic result, as expected. Note that �Ez

�x��kz1→
+� ,k�x�=�Ex

�z��kz1→ +� ,k�z�, but �Et

�x��kz1→ +� ,k�x�
��Et

�z��kz1→ +� ,k�z�, because Et
�x� involves a mixture of

longitudinal and transverse field components, whereas Et
�z�

consists solely of transverse components. Instead, �Et

�x��kz1

→ +� ,k�x�=�Eyz

�z� �kz1→ +� ,k�z�, where Eyz�Ey1y +Ez1z.
The previous results permit a simple geometrical interpre-

tation. At two arbitrary locations at asymptotically large dis-
tances from the surface, the relative instantaneous orientation
of the local field phasors E�r1� and E�r2� is governed only

FIG. 6. Mixed spatial correlation function −j�ExHy
�kz1 ,k�z� as a

function of separation k�z in normal direction �x1=x2 , y1=y2�.

FIG. 7. Local and reference oordinate systems ox�y�z� and oxyz
for analysis of arbitrary direction of point separation.

FIG. 8. Spatial correlation functions �Ey
�kz1 ,k�x� and

�Ez
�kz1 ,k�x� of transverse field as a function of tangential separa-

tion k�x for z1=z2.
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by their relative distance, on account of their asymptotically
homogeneous spatial correlation �for example, for a quasi-
stationary mode-stirred reverberant field �21�, these phasors
are slowly and randomly rotating in all three dimensions of
configurational space�. Their mutual coherence is defined by
the ensemble average of the projection �complex scalar prod-
uct� of one phasor onto the other. When both locations ap-
proach a PEC surface with preservation of their mutual dis-
tance, both phasors start lining up, as they would also do in
the case when their relative distance would be reduced. This
alignment becomes more pronounced with decreasing abso-
lute or relative height above the surface and is stronger for
field components that are parallel to the surface than for nor-
mal fields. On reaching the surface, the values of correspond-
ing field components are completely correlated, irrespective
of the separation distance parallel to the surface.

V. CORRELATION DISTANCE

Since the previous correlation functions are either purely
real or purely imaginary �on account of the surface being
perfectly conducting� and exhibit damped oscillations with
respect to their zero asymptotic value, we can define an as-
sociated �dimensionless� spatial �auto�correlation distance
for E �or for any one of its Cartesian components�, as mea-
sured in the direction of point separation 1�, based on the
first zero-crossing distance of �E�kz1 ,k���

�����kz1� � �E
−1�kz1,0� , �47�

where �=x, y, z. This definition has the advantage of being
simple to calculate to arbitrary precision from �E�kz1 ,k���.
Asymptotic values of �����kz1� for kz1→0 and kz1→ +� cor-
responding to the definition �47� are listed in Table I. The
asymptotic correlation distance �����kz1→ +�� will be fur-
ther denoted as ��

��� for brevity.

Alternatively, the spatial correlation length may be de-
fined as the area

�����kz1� � �
−�

+�

��E�kz1,k����2d�k��� . �48�

This definition has the advantage of being also applicable to
complex �E�kz1 ,k�z�. However, for general �E�z1 ,z2�, the
truncation of the numerical integration to finite limits im-
poses an inherent inaccuracy when �E is not known in closed
form. Asymptotic values corresponding to the definition �48�
are listed in Table II. Comparison with corresponding values
in Table I shows that the anisotropy of the spatial correlation
now appears to be usually smaller with this second defini-
tion.

Figures 9 and 10 show the dependence of the ratios
�����kz1� /��

��� on kz1 for the transverse, longitudinal, and total
fields, for separation in the normal ��=z� or tangential ��
=x� direction, respectively. The definition of �����kz1� that
was used in generating these plots is �48�. The damped os-
cillatory dependence of this ratio with increasing kz1 indi-
cates that the correlation length tends asymptotically to its
free-space value, although more slowly for the tangential
field than for the normal field. The fluctuations for the total
field are significantly smaller and more irregular for tangen-
tial separation than for normal separation. Also, the oscilla-
tions are significantly stronger for the tangential field than
for the normal component. For example, for normal separa-
tion at z1=� /2, this ratio for Et�kz1� deviates by more than
25% from the asymptotic value, but by only about 10% for
Ez�kz1�.

To verify that the observed oscillatory behavior of
�����kz1� /��

��� is not particular to the choice of definition �48�,
this ratio has also been computed using �47� for normal sepa-
ration and is shown in Fig. 11. Comparison with Fig. 9 con-

TABLE I. Asymptotic values of correlation length �����kz1� �in units k��� for E� calculated using
�47�.

��z��0� ��z���� ��z��0� /��z���� ��x��0� ��x���� ��x��0� /��x����

Ex 3.870 2.744 1.411 5.535 4.493 1.232

Ey 4.493 2.744 1.638 4.185 2.744 1.525

Ez 4.493 4.493 1.000 2.744 2.744 1.000

Et 4.233 2.744 1.543

E 4.493 � 1.430 2.744 � 0.8734

TABLE II. Asymptotic values of correlation length �����kz1� �in units k��� for E� calculated using
�48�.

��z��0� ��z���� ��z��0� /��z���� ��x��0� ��x���� ��x��0� /��x����

Ex 6.38 1.65 3.87 2.29 1.95 1.17

Ey 3.89 1.65 2.35 1.87 1.57 1.19

Ez 2.58 1.88 1.37 1.57 1.57 1.00

Et 4.35 1.65 2.65

E 1.38 � /2 0.88 1.57 � /2 1.00
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firms that the oscillatory behavior is fundamental and that
these two different definitions of �����kz1� for Et result in
mainly quantitative rather than qualitative differences in
��z��kz1� /��

�z�. However, for E and to a lesser extent Ez, a
considerably larger difference between values for both defi-
nitions exists in the close vicinity of the surface. Thus, for
inhomogeneous random EM fields, the value of the relative
correlation length depends strongly on the particular choice
of definition. This is supplementary to the well-known sen-
sitivity of the absolute correlation length on the choice of
definition in the case of homogeneous fields �26�. A general
feature is that the correlation length exhibits oscillations as a
function of kz1 that become increasingly more pronounced
when kz1→0. These have also been observed in numerical
studies of correlation functions inside two-dimensional quan-
tum billiards �Fig. 1 in �6��. Our present result suggests that
oscillations of the correlation length around its asymptotic
value exist in the presence of a single boundary and, there-
fore, occur also in open �nonresonant� configurations.

Thus, the following picture emerges, as is illustrated sche-
matically in Fig. 12. �The following discussion is based on
values obtained with definition �48�.� At arbitrarily large dis-
tances from the surface �kz1→ +��, the coherence cell �cf.
Sec. VI� is spherically symmetric for the total field E but
ellipsoidal for Ex, Ey, and Ez, on account of the different

correlation functions for longitudinal vs. transverse compo-
nents relative to the direction of separation. The respective
�dimensionless� coherence volumes of these cells are ��

=2.03, �x,�=�y,�=2.66, and �z,�=2.46. The major axis of the
ellipsoids is along the direction of the field component in
question, yielding a prolate spheroid for Ez and an oblate one
for Ex or Ey.

When z1 starts approaching the surface along the normal
direction, the shape �axial ratios� and volume of the coher-
ence cells change in a complicated and independent but os-
cillatory manner, with a quasiperiod of approximately � /2.
On average, the amplitude of the oscillations and the coher-
ence volume increase in this process. In general, the coher-
ence distances for longitudinal and transverse field compo-
nents do not change in phase with one another as a function
of z1, whence the coherence cells change shape in a fairly
complicated manner. When z1 reaches the surface, the coher-
ence cells for Ex

�x�, Ey
�x�, and Ez

�x� are all distinctly prolate in x
direction, with respective axial ratios 2.79, 2.08, and 1.63,
whereas the originally spherical cell for E is now marginally
oblate spheroidal �axial ratio 0.87�. The volume of the coher-
ence cells of the field components has increased most promi-
nently for the tangential fields. When using the definition

FIG. 9. Normalized correlation distances for separation in nor-
mal direction, calculated using �48�.

FIG. 10. Normalized correlation distances for separation in tan-
gential direction, calculated using �48�.

FIG. 11. Normalized correlation distances for separation in nor-
mal direction, calculated using �47�.

FIG. 12. Correlation cells �ellipsoids� for the electric field and
its Cartesian components �directions indicated by arrows� for free
random fields �kz1→ +�; top row� and for surface random fields
�kz1→0; bottom row�. Listed asymptotic values of correlation
lengths were calculated based on definition �48� �see Table II�.
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�47� instead, the dynamics are qualitatively similar but the
coherence volumes close to the surface are now significantly
larger �typically by a factor between 5 and 10�.

VI. DENSITY OF UNCORRELATED POINT LOCATIONS

When estimating sample statistics �e.g., the expected
value of the random maximum field amplitude�, the local
number N�kz1� of uncorrelated samples is of fundamental
interest. For the total field or any component E�, the ratio

N�kz1�
N��k�

�
���k�
��kz1�

, �49�

in which the �dimensionless� volume of the local ellipsoidal
coherence cell centered at kz1 is defined by

��kz1� �
4�

3
��x��kz1���y��kz1���z��kz1� , �50�

serves as an estimate for the ratio �27� of the number N�kz1�
of volumetrically uncorrelated sampled �point� values con-
tained within an arbitrary physical volume V centered at a
distance kz1 and the corresponding number N��k� within an
equivalent volume but at arbitrarily large distance from the
boundary.

The local number N��kz1� for E��kz1� within V centered
around r1 is then the number of coherence cells contained
within V�k3V

N��kz1� �
V�k�

���kz1�
=

6�2V

�3�E�

�x��kz1��E�

�y��kz1��E�

�z��kz1�
�51�

with corresponding point density n��kz1�=k3 /���kz1�.
The value of the ratio �49� is somewhat less sensitive to

the particular choice of definition �47� or �48�, at least for
sufficiently large kz1, compared to the dependency displayed
by the absolute value of the �����kz1� and, hence, �51�. This
phenomenon has also been observed for homogeneous ran-
dom EM fields �26�.

Specific ratios N����kz1� /N�,�
��� for one-dimensional densi-

ties may similarly be defined for separations along a specific
coordinate direction 1� �correlation along the line�, now with
N�

����kz1��L�k� /��
����kz1� for a line segment of physical

length L=L /k. For an arbitrary spatial linear direction 1r, an
effective value can be estimated as

N�
�r��kz1�
N�,�

�r� � �N��kz1�
N�,�

�1/3

�52�

or, more generally, through elaborated explicit calculation
�cf. Sec. IV�.

Finally, the effective relative correlation distance as an
average value with respect to all spatial directions of separa-
tion 1r can be estimated from �51� as

��r��kz1�

��
�r� � ���kz1�

��
�1/3

. �53�

Again, for arbitrary 1r, ��r��kz1� can be calculated in a more
elaborate manner using the method in Sec. IV.

VII. CONCLUSION

In this paper, we derived closed-form expressions for a
classical EM random vector field in the presence of an infi-
nite planar PEC surface. For separation of a pair of locations
in the direction of the surface normal, the approach of the
nearest point toward the surface results in the correlation
lengths of the field and its components to increase in value,
as witnessed by an increased region of k�z for which the
correlation function remains close to unity. For cross-
correlation between different and/or mixed field components,
the correlation function increases in an oscillatory manner
from zero at infinite distance to a large negative value on
reaching the surface.

The analysis shows that the correlation distance and,
hence, the number of spatially uncorrelated sample points N
exhibit fluctuations as a function of the absolute central dis-
tance from the wall. Unlike the fluctuations of E, however,
these are deterministically calculable for the configuration in
question. With regard to estimation of sample statistics of E,
which are based on the value of N, the variability of N leads
to increased uncertainties.
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